ANSI/ACP 101-1 2021 The Small Wind Turbine Standard ANSI Approval Date December 21, 202x # AMERICAN CLEAN POWER ASSOCIATION Standards Committee #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard #### AMERICAN NATIONAL STANDARD Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer. Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution. The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards. The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard. Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 11 West 42nd Street, New York, NY, 10036, phone (212) 642-4900. #### AMERICAN CLEAN POWER ASSOCIATION STANDARDS Standards promulgated by the American Clean Power Association (ACP) conform to the ACP Standards Development Procedures adopted by the ACP Board of Directors. The procedures are intended to ensure that ACP standards reflect a consensus to persons substantially affected by the standard. The ACP Standards Development Procedures are intended to be in compliance with the American National Standards Institute (ANSI) Essential Requirements. Standards developed under the ACP Standards Development Procedures are intended to be eligible for adoption as American National Standards. Attribution: No part of this standard may be reproduced or utilized in any form without proper attribution to the American Clean Power Association. Credit should be acknowledged as follows: "ANSI/ACP 101-1 2021 The Small Wind Turbine Standard© The American Clean Power Association." Disclaimer: ACP Standards are developed through a consensus process of interested parties administered by the American Clean Power Association. ACP cannot be held liable for products claiming to be in conformance with this standard. Published by: American Clean Power Association 1501 M Street, N.W., Suite 900 Washington D.C. 20005 www.cleanpower.org © Copyright 2021 by the American Clean Power Association. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions. #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard #### NOTICE AND DISCLAIMER The American Clean Power Association ("ACP") has provided this Document for the use subject to important notices and legal disclaimers. This Document is proprietary and its use is subject to a legally binding license agreement and disclaimer ("Agreement") described herein and available on ACP's website at https://cleanpower.org/standards-development/, which may be updated from time to time. Do not use this Document for any purpose unless and until you read the agreement. By viewing or otherwise using this Document, you hereby warrant and represent that you have read and agree to be legally bound by the agreement and are authorized to bind not only yourself to the agreement, but the organization for which you are accessing this Document. #### **Notice and Disclaimer Concerning ANSI Process** Certain ACP standards and best practice publications, of which the Document contained herein is one, are developed through a voluntary consensus standards development process. ACP administered the process in accordance with the procedures of the American National Standards Institute (ANSI) to promote fairness in the development of consensus. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this Document. The information in this Document was considered technically sound by the consensus of persons engaged in the development and approval of the Document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this Document. # Notice and Disclaimer Concerning Accuracy of Information and Liability Concerning the Use of ACP Publications Every effort has been made to assure the accuracy and reliability of the data and information contained in this Document; however, ACP does not write this Document and it does not independently test, evaluate or verify the accuracy or completeness of any information or the soundness of any judgments contained in its publications. ACP disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein. In publishing and making this Document available, ACP is not undertaking to render professional or other services for or on behalf of any person or entity. This Document, and ACP publications in general, necessarily address problems of a general nature. ACP disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this Document or its other publications will fulfill any of your particular purposes or needs. ACP does not undertake to guarantee the performance of any individual manufacturer or seller's products or services by virtue of this Document. Users of this Document should not rely exclusively on the information contained in this Document and should apply sound business, scientific, engineering, and safety judgment in employing the information contained herein or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this Document may be available from other sources, which the user may wish to consult for additional views or information not covered by this Document. Use of this Document is strictly voluntary. ACP has no power, nor does it undertake to police or enforce compliance with the contents of this Document. ACP does not certify, test or inspect products, designs or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety—related information in this Document shall not be attributable to ACP and is solely the responsibility of the certifier or maker of the statement. ACP disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this Document or on any of its other publications, even if advised of the possibility of such damage and regardless of whether such damage was foreseeable. In #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard addition, ACP does not warrant or represent that the use of the material contained in this Document is free from patent infringement. ACP publications are supplied "AS IS" and "WITH ALL FAULTS." #### Laws & Regulations When using this Document, local, state and federal laws and regulations should be reviewed. Compliance with the provisions this Document does not constitute compliance to any applicable legal requirements. In making its publications and this Document available, ACP does not intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so. Users of this Document and other ACP publications should take into account state, local, Federal, or international data privacy and data ownership requirements in the context of assessing and using the publications in compliance with applicable legal requirements. #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard ACP Wind Technical Standards Committee members, at the time the standard was approved: | Company Name | Primary | Alternate | |--|--------------------|-------------------| | Acciona Energy USA Global LLC | Brian Mathis | Richard Heier | | Advanced Insulation Systems LLC | Mike Sherman | | | Alimak Group USA Inc. | Luke Metzinger | | | American Renewable Energy Standards and Certification Association (ARESCA) | Brian McNiff | Robert Sherwin | | ArcVera Renewables | John Bosche | Gregory Poulos | | Avangrid Renewables | Christopher Morris | Agustin Melero | | Barr Engineering Company | Kirk Morgan | Cordelle Thomasma | | Bergey Windpower Co. Inc. | Mike Bergey | | | Boulder Wind Consulting | Sandy Butterfield | | | Clear Wind | Matt McCabe | | | Clobotics Corporation | Nicholas Acorn | Rogers Weed | | CTE WIND USA, Inc CIVIL ENGINEERING | Jomaa Ben Hassine | Alexander Martin | | DNV | Brian
Kramak | Dayton Griffin | | Elevator Industry Work Preservation Fund | Carisa Barrett | Eric Rogers | | ENERCON Canada Inc. | Tarik Daqoune | | | Energy Systems Integration Group (ESIG) | Cody Craig | Stanton Peterson | | Exponent | Timothy Morse | Bernard Roesler | | GE Renewable Energy | Mark Helton | Toby Gillespie | | HSB - Hartford Steam Boiler | Linkesh Diwan | Simon Krebs | | Leeward Renewable Energy | Ronald Grife | | | Marmon Electrical - RSCC Wire & Cable | Damian Billeaudeau | Phil Laudiciana | | MotorDoc LLC | Howard W. Penrose | Branka Stemack | | National Renewable Energy Laboratory | Jeroen van Dam | Paul Veers | | NRG Systems | Rob Cole | Steven Clark | | nVent ERICO | Tom Bendlak | Dan Holm | | Pattern Energy Group Services, LP | Michael Edds | | | Penn State University | Susan W. Stewart | | | RE Innovations LLC | Joseph Spossey | | | Sargent & Lundy L.L.C. | David Jolivet | | | Siemens Gamesa Renewable Energy | Masoud Sharifi | | | Small Wind Certification Council | Shawn Martin | | | Spire Engineering Services LLC | Robert Sheppard | | | Terra-Gen LLC | Yuanlong Hu | | | U.S. Department of Energy | Jim Ahlgrimm | Michael Derby | | UL LLC | Tim Zgonena | Jason Hopkins | | University of Texas at Austin | Lance Manuel | John Eggers | | Vestas North America | Trevor Taylor | | #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard | WSB-Hawaii | Warren Bollmeier | | |------------|------------------|--| |------------|------------------|--| ACP SWT-Subcommittee members, at the time the standard was approved: | Organization | Name | |--------------------------------------|---------------------| | Advanced Renewable Technology | Robert Preus | | Bergey Windpower Co. Inc. | Tod Hanley | | Distributed Wind Energy Association | Mike Bergey | | National Renewable Energy Laboratory | Ian Baring-Gould | | National Renewable Energy Laboratory | Brent Summerville | | National Renewable Energy Laboratory | Jeroen van Dam | | Niagara Wind and Solar | Thomas Fleckenstein | | Primus Wind Power | Ken Kotalik | | RE Innovations LLC | Joseph Spossey | | Wind Advisors Team | Trudy Forsyth | | Windward Engineering L.L.C. | Dean Davis | #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard #### FOREWORD and BACKGROUND The Foreword and Background sections are included with this document for information purposes only and are not part of the American Clean Power Association (ACP) ANSI/ACP 101-1 2021 The Small Wind Turbine Standard. #### **Foreword** The goal of this standard is to provide meaningful criteria upon which to assess the quality of the engineering that has gone into a small wind turbine and to provide consumers with performance data that will help them make informed purchasing decisions and an assurance that a turbine has been certified to a national standard. The standard is intended to be written to ensure the quality of the product can be assessed while imposing only reasonable costs and difficulty on the manufacturer to comply with the standard. #### **Background** ACP is recognized by the American National Standards Institute (ANSI) as an Accredited Standards Developer. This standard was developed in a regimented ANSI process for "voluntary consensus standards" which requires participation from a range of representatives for manufacturers, technical experts, public sector agencies, and consumers. This standard was originally drafted as the American Wind Energy Association (AWEA) Small Wind Turbine Performance and Safety Standard (ANSI/AWEA Standard 9.1 – 2009) by the AWEA Small Wind Turbine Standard Subcommittee which was chaired by Mike Bergey of Bergey Windpower Company. The initial draft standard, which was released in December of 2009, has been in use by the small wind turbine industry for the purpose of testing and certifying small wind turbines and served as the basis of the working document to circulate to affected parties. This standard is now being promulgated by the ACP SWT-Subcommittee of the ACP Wind Technical Standards Committee. The subcommittee consists of co-chairs Brent Summerville of the Small Wind Certification Council, Jeroen van Dam of the National Renewable Energy Laboratory, and Mike Bergey of Bergey Windpower. As part of this promulgation process, this standard has been renamed the ANSI/ACP 101-1 2021 The Small Wind Turbine Standard. The changes in this new edition include: - Changes and removal of items to bring the standard in line with the updated IEC 61400 standards incorporated within this standard; - Incorporate lessons learned during the use of AWEA Standards 9.1 2009; - Changes to lessen the burdens of certification and increase the value to the consumer; and - Segregate the technical requirements from the conformity assessment requirements. #### **Revision Log** | Revised on | Version | Description | Approved by ANSI | |----------------------------|--------------------|---|------------------| | October 2023 March
2025 | Addendummendment 1 | Clarify control system evaluation and loads validation testing requirements | | | | | | | #### The Small Wind Turbine Standard # **Table of Contents** | <u>1</u> | General Information | <u> 9</u> | |----------------|------------------------------|-----------------------| | | 1.1 Purpose. | | | | 1.2 Overview | <u> 9</u> | | | 1.3 Scope. | <u> 9</u> | | | 1.4 Definitions1 | <u>010</u> | | | 1.5 Units | <u>144</u> | | 2 | Power Performance Testing1 | <u> 144</u> | | 3 | Acoustic Sound Testing | 11 | | 4 | Safety and Function Testing. | 12 | | <u>5</u> | Strength and Safety | 13 | | 6 | Duration Test | 16 | | 7 | | | | 8 | References and Appendices1 | | | | 8.1 Normative References | | | | 8.2 Informative References | | | Ar | ppendix A | | | | ppendix B | | | | General Information | | | | 1.1 Purpose. | | | | 1.2 Overview. | | | | 1.3 Scope. | | | | 1.4 Definitions | ۰ | | | 1.5 Units | 9
. 10 | | 2 | Power Performance Testing | | | | -Acoustic Sound Testing | | | | _ | | | | Safety and Function Testing | 12 | | 5 – | | | | | Strength and Safety | | | 6 – | | | | | Strength and Safety | 14 | #### ACP 101-1 a1-202x | 8.1 Normative References | 15 | |---|------------------| | 8.2 Informative References | 15 | | Appendix A | | | Appendix B | 20 | | | | | Figures | | | Figure 1 Sound levels as a function of distance and background noise levels for an ACP Reference Sound Pressure Level of 40 dB(A) | <u>2148</u> | | Figure 2 Sound levels as a function of distance and background noise levels for an ACP Reference Sound Pressure Level of 45 dB(A) |
<u>22</u> 18 | | Figure 3 Sound levels as a function of distance and background noise levels for an ACP Reference Sound Pressure Level of 50 dB(A) | <u>22</u> 19 | | Figure 4 Sound levels as a function of distance and background noise levels for an ACP Reference Sound Pressure Level of 55 dB(A) | <u>23</u> 19 | | | | | Tables | | | Table 1 Overall Sound Levels at Different Locations for an ACP Reference Sound Pressu of 40 dB(A) | | | Table 2 Overall Sound Levels at Different Locations for an ACP Reference Sound Pressu of 45 dB(A) | re Level | | Table 3 Overall Sound Levels at Different Locations for an ACP Reference Sound Pressu of 50 dB(A) | re Level | | Table 4 Overall Sound Levels at Different Locations for an ACP Reference Sound Pressu of 55 dB(A) | re Level | ACP 101-1 a1-202x #### The Small Wind Turbine Standard # 1 General Information # 1.1 Purpose This standard was created by the small wind turbine industry, scientists, state officials, and consumers to provide consumers with realistic and comparable performance ratings and an assurance theat small wind turbine products certified to this standard have been engineered and tested to meet carefully considered standards for safety and operation. The goal of the standard is to provide consumers with a measure of confidence in the quality of small wind turbine products and an improved basis for comparing the performance and characteristics of competing products. Compliance with this standard for the purposes of advertising or program qualification, or any other purpose, is the responsibility of the manufacturer. #### 1.2 Overview - 1.2.1 This standard provides a method for evaluation of wind turbine systems in terms of safety, reliability, power performance, and acoustic characteristics. This standard for small wind turbines is derived from existing international wind turbine standards developed under the auspices of the International Electrotechnical Commission (IEC). Specific departures from the IEC standards are provided to streamline their use and to present their results in a more consumer-friendly manner. - 1.2.2 No indirect or secondary standards references are intended. Only standards directly referenced in this standard are embodied. ## 1.3 Scope #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard - 1.3.1 This standard applies to electricity-producing wind turbines having a Peak Power of 150 kW or less. - 1.3.2 A turbine system includes the wind turbine itself, the turbine controller, the inverter, if required, and all other components between the wind turbine and the point of connection with the electrical load. - 1.3.3 Towers and foundations are not considered part of the turbine system because it is assumed that conformance of the support structure to the International Building Code, Uniform Building Code or their local equivalent will be required for a building permit. Additional guidance on tower and foundation design can be found in IEC 61400-6. However, tower design requirements must-shall be supplied (section 5). - 1.3.4 In cases where several variations of a turbine system are available, it is
expected that a full evaluation would be performed on one of the more representative arrangements. Other variations, such as different power output forms, need only be evaluated or tested in the ways in which they are different from the base configuration. Annex A (Variants of small wind turbine systems) of IEC 61400-2 ed.3 provides guidance on this topic. #### 1.4 Definitions 1.4.1 Definitions contained in IEC 61400-12-1, ed.2, IEC 61400-11, ed.3, and IEC 61400-2, ed.3 are hereby incorporated by reference. #### 1.4.2 Additional Definitions | Term | Definition | |---|--| | Micro wind turbine | A wind turbine with a Peak Power up to 1 kW. | | Reference Power | The wind turbine's power output, expressed as kW, at 11 m/s (24.6 mph), or the maximum output power of the wind turbine system at a lower wind speed if this is a higher power output, per the power curve from IEC 61400-12-1 ed.21, except as modified in Section 2 of this standard. | | Reference Annual Energy | The calculated total energy, expressed as kWh, that would be produced during a one-year period at an average wind speed of 6 m/s (13.4 mph), assuming a Rayleigh wind speed distribution, 100% availability, and the power curve derived from IEC 61400-12-1 ed. 2. Within this standard Reference Annual Energy is AEP-measured and sea-level normalized. | | ACP Reference Sound
Pressure Level. ¹ | The sound pressure level, expressed as dB(A), that will not be exceeded 95% of the time, assuming an average wind speed of 5 m/s (11.2 mph), a Rayleigh wind speed distribution, and 100% availability. For these conditions, the wind speed of 9.8 m/s would not be exceeded 95% of the time. The ACP Reference Sound Pressure Level is calculated from IEC 61400-11 ed. 3 test results at an observer location 60 m (197 ft.) from the rotor center, except as modified in Section 3 of this standard. | ¹ Appendix A contains guidance on obtaining sound levels for different observer locations and background sound levels. #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard | ACP Consumer label | A label that states: manufacturer and model, Reference
Annual Energy, Reference Power, ACP Reference Sound
Pressure Level, certification body. | |-----------------------|--| | Peak Power | Highest bin-averaged power output of all filled wind speed bins per the procedure defined in Section 4 Safety and Function expressed as [Peak Power] kW @ [Peak Power Wind Speed] m/s. | | Peak Power Wind Speed | Wind speed bin at which Peak Power occurs. | #### 1.5 Units 1.5.1 The primary units shall be SI (metric). The inclusion of secondary units in the English system is recommended [e.g., 10 m/s (22.4 mph)]. # 2 Power Performance Testing [Informative note: Power performance testing results in a measured power curve which is determined by collecting simultaneous measurements of wind speed and power output at the test site for a period that is long enough to establish a statistically significant database over a range of wind speeds and under varying wind and atmospheric conditions. The estimated annual energy production of the wind turbine is calculated by applying the measured power curve to a reference wind speed frequency distribution, assuming 100 % availability. Consumers can utilize the resulting performance characteristics for comparing wind turbine models. The measured power curve can be used to estimate site-specific annual energy production if estimations are properly adjusted for the local conditions including wind resource and distribution, elevation, terrain, turbulence, obstacles, hub height, etc. The procedure for determining Peak Power is provided in Section 4, Safety and Function, because for its purposes the full requirements of IEC 61400-12-1 are not deemed necessary.] - 2.1 Wind turbine power performance shall be tested and reported in accordance with IEC 61400-12-1 ed. 2, including and must be in compliance with Annex H (Power performance testing of small wind turbines), with the additional requirements listed below. - 2.1.1 In Annex H, item b, battery banks are considered to be part of the wind turbine system for grid-connected wind turbines that incorporate a battery bank. - 2.1.2 A site calibration is not required. - 2.1.3 When determining exclusion sectors, sectors where the turbine is affected by the obstacle may be used as long as the anemometer is not affected; note that turbine power and Cp may be lower in these sectors. - 2.1.4 The Reference Power and Reference Annual Energy shall be determined and reported in the test report. # 3 Acoustic Sound Testing [Informative note: Acoustic sound testing involves the measurement and analysis of acoustical emissions by small wind turbines and enables the acoustic emissions to be characterized. The results of the testing can be used by the consumer to compare the acoustic characteristics of different turbine models. Consumers can utilize the provided appendix to calculate sound pressure levels for different observer locations and background sound levels.] #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard - 3.1 Wind turbine sound levels shall be measured and reported in accordance with IEC 61400-11 ed. 3, and must be in compliance including with Annex F (Small wind turbines), with the additional requirements listed below. - 3.1.1 A tonality analysis is not required, but the presence of prominent tones shall be observed and reported. Prominent tones are tones that are clearly audible over the broadband sound of the wind turbine. The tones can change in frequency or loudness with rpm or yawing. - 3.1.2 Uncertainty should be calculated and reported. - 3.1.3 The ACP Reference Sound Pressure Level shall be calculated per the guidance below and reported in the test report. - 3.1.3.1 Given a Rayleigh wind speed distribution, and the requirement for determining a sound level not to be exceeded 95% of the time, sound power levels must first beare determined in the 9 m/s and 10 m/s bins so an interpolation to 9.8 m/s can be performed. 9.8 m/s is the wind speed that will not be exceeded 95% of the time given a Rayleigh wind speed distribution and a site annual average wind speed of 5 m/s. Note: If the bin average wind speed in the 10 m/s bin is greater than 9.8 m/s, then the interpolation will be between the 9 and 10 m/s bins. If the bin average wind speed in the 10 m/s bin is less than 9.8 m/s, then the interpolation will be between the 10 and 11 m/s bins. - 3.1.3.2 The method of interpolation to determine sound power level at 9.8 m/s shall follow section 9.2.4 of IEC 61400-11 ed.3, specifically utilizing equations 20 and 21. Equations 22 25 are not necessary as uncertainty of the ACP Reference Sound Pressure Level is not required. - 3.1.3.3 IEC 61400-11 ed.3 Equation 21 is first applied to determine the t value at the given wind speed of V = 9.8 m/s. - 3.1.3.4 After establishing a known t value at 9.8 m/s, the principle of IEC 61400-11 ed.3 Equation 20 is then applied, but instead using the sound power values resulting from equation 27 (as opposed to sound pressure values as shown in equation 20). The resultant sound power level at 9.8 m/s, LWA,9.8, is then used to determine the ACP Reference Sound Pressure Level. IEC 61400-11 ed.3 Equation 26 is rearranged and $L_{WA,9.8}$ is utilized to calculate the Reference Sound Pressure Level, L_{ACP} . The equation below is used: $$L_{ACP} = L_{WA,9.8} - 10\log[4\pi r^2]$$ Where r = distance to observer (60 m) Note: The 6 dB constant in Equation 26 is removed from the rearranged equation above because it is already factored into the determination of sound power levels given in Equation 27. # 4 Safety and Function Testing [Informative note: The purpose of safety and function testing is to verify that the turbine under test displays the behavior predicted in the design and that provisions relating to personnel safety are properly #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard implemented. Critical functions of the control and protection system - such as power and speed control, wind alignment (yaw), over speed protection, start-up and shutdown - are tested and verified.] - 4.1 A Safety and Function Test shall be performed in accordance with Section 13.6 of IEC 61400-2 ed. 3, with the additional requirements listed below. - 4.1.1 The manufacturer shall define the critical control and protection system functions to be tested and the expected resultant turbine behavior. - 4.1.2 Power limitation shall be demonstrated by measuring the power output of the wind turbine system. Note: to demonstrate power limitation it may be necessary to measure power at more than one point in the turbine system. For example, the output of the turbine system may be limited by the inverter even if the rotor power is still increasing. - 4.1.3 To determine Peak Power the following procedure shall be used: - 4.1.3.1 The anemometer should be at hub height, but no direction sectors need be excluded, no terrain assessment is required, and no site calibration is required. - 4.1.3.2 The methods of normalization and binning of hub height wind speed and power per IEC 61400-12-1 shall be used. - 4.1.3.3 1-minute averaging shall be used for wind speed and power. - 4.1.3.4 Bins shall be filled (at least
10 1-minute data points in each 0.5 m/s bin) over at least the following wind speed range: - 4.1.3.5 From 5 m/s below the lowest wind speed at which power is within 95% of Peak Power. - 4.1.3.6 To 5 m/s beyond the lowest wind speed at which power is within 95% of Peak Power; or up to the wind speed where the turbine shuts down as a power regulation response. - 4.1.3.7 The highest binned power of the filled wind speed bins covering the wind speed range listed above is defined as Peak Power. Per 1.4.2.7, the bin average wind speed at which Peak Power occurs is defined as Peak Power Wind Speed. - 4.1.4 Rotor speed limitation shall be demonstrated by measurement of rotor speed during the Safety & Function test. The testing parameters described in Section 13.2.4 (Maximum rotational speed) of IEC 61400-2 ed. 3 shall be utilized. # 5 Strength and Safety [Informative note: The engineering and technical requirements to ensure the safety of the structural and mechanical systems of the wind turbine are given in the following section. Design loads are obtained through either calculation or, simulation modeling, and/or direct measurement for a variety of load cases: a set of design situations covering the most significant normal and extreme conditions which the turbine system may experience in its life. Safety factors are applied to these loads and the mechanical strength of the major components is evaluated considering the material properties, ultimate loads and fatigue loads. The maximum operating load as predicted by the design calculations or modeling is physically applied to the rotor blade in the static blade test to verify blade strength and deflection.] 5.1 Design loads for turbines with a Peak Power greater than 1 kW shall be determined per IEC 61400-2 ed.3 using Class II and a turbulence intensity at 15 m/s (TI15) of 20% or Class S. The IEC SWT class per Table 1 of IEC 61400-2 ed. 3 is limited to Class II or S and TI15 is assumed to be 20%. #### ACP 101-1 a1-202x - 5.2 Use of the Simplified Load Methodology shall be limited to turbines with a Peak Power less than 30 kW but is not recommended for turbines with a Peak Power greater than 10 kW. Use of the Simplified Load Model is not recommended for turbines with a Peak Power greater than 10 kW. - 5.3 The Sstrength of the turbine system shall be assessed using the design loads determined in Section 5.1 and other design data and in accordance with following the guidance given in Section 5.2 of IEC 61400-2 ed.3, Section 5.2, in combination with the requirements for stress calculations in Section 7.7, the safety factors in 7.8, and limit state analysis in 7.9. - In Table 6 Partial safety factors for materials, intermediate factors between minimal and full characterization may be used; see refer to Annex E of IEC 61400-2 ed. 3, Annex E. - 5.4 The strength evaluation shall include the following major components, as a minimum: - 1. : the Bblades, - 2. Belade root to hub connection, - 3. Hhub, - 4. M, main shaft, - 5. B-bearings, - 6. Y-yaw shaft_ (for horizontal axis wind turbines), - 7. C-connection to the tower, - 8. C-eritical safety / protection systems and components. - 9. and nNacelle frame. - -The rest of the structure shall be checked to verify that sound engineering practices have been employed in the design to maintain normal operation of the wind turbine and for the prevention of any potential hazards. - 5.5 A static blade test shall be conducted in accordance with Section 13.5.2 of IEC 61400-2 ed. 3. - To ensure the turbine is paired with an appropriate tower, the manufacturer shall submit design requirements for towers including: - 5.6.1 mechanical and electrical connections; - 5.6.2 minimum blade/tower clearance; - 5.6.3 maximum tower top loads; - 5.6.4 maximum allowable tower top deflection; and - 5.6.5 fundamental frequencies to avoid as evidenced by a resonance diagram (e.g. Campbell diagram) per IEC 61400-2 ed. 3 Annex I. - 5.7 Model inputs and outputs As required by the table in Appendix B certain design input parameters must shall be validated per the requirements below. - 5.7.1 For turbines using the Simplified Load Methodology, inputs shall be validated per 5.7.1.1 and 5.7.1.2. - 5.7.1.1 Design parameters shall be validated by conducting Tests to Verify Design Data in IEC 61400-2. Ed. 3, Section 13.2.4 - 5.7.1.2 Major component weights, for components listed in Section 5.4, shall be verified. #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard 5.7.2 For turbines using simulation modeling, model inputs and outputs shall be validated per the requirements below as applicable based on turbine size categories as shown in Table 5.7... This may be accomplished via the guidance given below. The purpose of the validation testing is for validations of the aero elasticdesign model inputs. Validations are required for designs following either the simple load methodology or utilizing a valid simulation model. | Validation | Micro wind | >1 kW to 30 kW | >30 kW to 65 kW | >65 kW to 150 kW | |-------------------------------|-------------------|----------------|-----------------|------------------| | | <u>turbines</u> | Peak Power | Peak Power | Peak Power | | Power curve validation | | <u>X</u> | <u>X</u> | <u>X</u> | | Rotor speed validation | <u>Loads</u> | <u>X</u> | <u>X</u> | <u>X</u> | | Blade first flapwise (static) | <u>Validation</u> | | v | V | | <u>natural frequency</u> | <u>Not</u> | | <u>X</u> | <u>X</u> | | <u>Tower loads validation</u> | Required | | | <u>X</u> | | Major component weights | | <u>X</u> | <u>X</u> | <u>X</u> | - 5.7.2.11 Turbines above 65 kW and less than 150 kW Peak Power require the following for simulation model validation: - 5.7.1.1 Power curve validation shall be performed by one of the following methods: - a) IEC 61400-12-1 power performance testing shall suffice for validation. - b) IEC 61400-13, Section-Cl- 6.3.2.1 power production testing, except that testing per may alternatively be completed, but 6.3.5.2 is only recommended for data collection guidance and is not required. - _____5.7.2.21.2 Rotor speed validation shall be performed by one of the following methods: - a) IEC 61400-2. Ed. 3, Section 13.2.4, Tests to Verify Design Data for maximum rotational speed. - b) IEC 61400-13, Table 12 rotor speed measurement validation with controller data may also be allowed along with other controller signals gathered for power performance or duration testing. This requires an IEC 61400-12-1 compliant meteorologicalmeasurement tower. - _____5.7.4.2.33 Blade first flapwise (static) natural frequency values shall be validated by one of the following methods: - a) IEC 61400-23 blade property tests for blade mass, center of gravity, and natural frequencies, which can be gathered during the blade static testing. - b) IEC 61400-13, Table 9 Load Quantities for blade root flatwise bending may alternatively be completed, refer to In this situation the simulation model may need to be rerun to attempt to match the conditions of the experimental data. Table 3 for guidance on how to obtain these frequencies. This requires an IEC 61400-12-1 compliant measurement tower. - 5.7.2.41.4 Tower loads validation shall be conducted using: IEC 61400-13, Table 9 Load Quantities for tower base normal and tower base lateral. - _____5.7.2..1.5 Major component weights, for components listed in Section 5.4, shall be verified.- #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard - 5.7.2.6 Where the measured design data does not match the design data used for loads and strength analyses, the models may be rerun to match the conditions of the experimental data. - 5.7.2 Turbines above 30 kW and less than 65 kW Peak Power require all items from 5.7.1 above, except for 5.7.1.4 tower loads, for simulation model validation. - 5.7.3 Turbines less than 30 kW Peak Power require the IEC 61400-2 clause 13.2 Tests to verify design data regardless of chosen design method; simplified load methodology or simulation model. Where a simulation model is performed major component weights are also required. Design validation testing is recommended but not required for Micro turbines with less than 1 kW Peak Power. - 5.7.34 VAWTs and other novel designs may require additional validations where non-validated design codes are used or do not accurately reflect the turbine archetype. VAWTs specifically mustshall refer to IEC 61400-13 ed.1 Annex J; load quantity requirements may be adjusted based on VAWT design features. Tower top loads may additionally be required for some archetypes. - 5.8 Wind turbine control and protection systems shall be designed to be fail-safe in accordance with IEC 61400-2 ed. 3, Section 8. Critical functions of the control and protection system such as power and speed control, wind alignment (yaw), over speed protection, start-up and shutdown shall be tested and verified in accordance with the Safety and Function Testing requirements in Section 4. ## 6 Duration Test [Informative note: A duration test is conducted to establish a minimum threshold of reliability. The test is designed to investigate structural integrity and material degradation (corrosion, cracks, deformations), and quality of environmental protection of the wind turbine. The test parameters are determined based on the SWT class chosen by the designer.] - 6.1 A duration test shall be performed in accordance with IEC 61400-2 ed.3, Section 13.4, with the modifications listed below: - 6.1.1 Wind speed is defined as the 1-min average of wind speed samples. - 6.1.2 The wind turbine will have passed the duration test when it has achieved: - 6.1.2.1 Reliable operation during the test period; - 6.1.2.2 The test <u>must-shall</u> include at least 10 hours in wind speeds of 15 m/s (33.6 mph) and above. The wind turbine <u>must-shall</u> be in its normal operational mode for the wind speed; and, - 6.1.2.3 The test must-shall include at least 1000 hours of power production. - 6.1.3 Calculation of
operational time fraction and analysis of power degradation are not required. - 6.1.4 Dynamic behavior observation (per IEC 61400-2 ed. 3, 13.4.3) is not required. # 7 Labeling - 7.1 An ACP consumer label shall be created that contains the following: - 7.1.1 Manufacturer and model of wind turbine; #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard - 7.1.2 Reference Annual Energy; - 7.1.3 Reference Power; - 7.1.4 Peak Power @ Peak Power Windspeed; - 7.1.5 ACP Reference Sound Pressure Level; and, - 7.1.6 Name and website of certification body granting certification to the SWT model according to this standard. - 7.2 A test summary report shall be created with, at a minimum, the following: - 7.2.1 Description of test turbine(s) and test location(s); - 7.2.2 Turbine Ratings: - 7.2.2.1 Reference Power; - 7.2.2.2 Reference Annual Energy; - 7.2.2.3 Peak Power: - 7.2.2.4 ACP Reference Sound Pressure Level; - 7.2.3 Power performance test: - 7.2.3.1 Sea-level normalized power curve and table; - 7.2.3.2 Sea-level normalized AEP curve and table; - 7.2.4 Acoustic test: - 7.2.4.1 Measured sound pressure levels; - 7.2.4.2 Sound power levels at integer wind speeds; - 7.2.5 Duration test: - 7.2.5.1 IEC small wind turbine class; - 7.2.5.2 Hours at required wind speeds - 7.2.6 For additional guidance of items that may be included see Annex M of IEC 61400-2. - 7.3 The ACP consumer label and the corresponding test summary report are to be made continuously and publicly available, in the English language as a minimum, on the manufacturer's web site and/or the certification body's web site. - 7.4 Reference Power, ACP Reference Sound Pressure Level, and Peak Power shall be rounded to one decimal place. - 7.5 Reference Annual Energy shall be rounded to three significant figures. # 8 References and Appendices #### 8.1 Normative References | Reference Number | Reference Title | |---------------------|--| | IEC 61400-12-1 ed.2 | Wind Turbines – Part 12-1: Power performance measurements of electricity producing wind turbines | | IEC 61400-11 ed.3 | Wind Turbines – Part 11: Acoustic noise measurement techniques | #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard | IEC 61400-2 ed.3 | Wind Turbines – Part 2: Small wind turbines | |--------------------|--| | IEC 61400-13 ed. 1 | Wind turbines - Part 13: Measurement of mechanical loads | | IEC 61400-23 ed. 1 | Wind turbines - Part 23: Full-scale structural testing of rotor blades | #### 8.2 Informative References | Reference Number | Reference Title | |--------------------|---| | IEC 61400-6 ed. 1 | Wind energy generation systems - Part 6: Tower and foundation design requirements | | IEC 61400-13 ed. 1 | Wind turbines - Part 13: Measurement of mechanical loads | | IEC 61400-23 ed. 1 | Wind turbines - Part 23: Full-scale structural testing of rotor blades | #### The Small Wind Turbine Standard # **Appendix A** #### Sound Levels for Different Observer Locations and Background Sound Levels The ACP Reference Sound Pressure Level is calculated at a distance of 60 meters from the rotor hub and excludes any contribution of background sound. As the distance from the turbine increases, the background sound becomes more dominant in determining the overall sound level (turbine plus background). Background sound levels depend greatly on the location and presence of roads, trees, and other sound sources. Typical background sound levels range from 35 dB(A) (quiet) to 50 dB(A) (urban setting) Equation 1 can be used to calculate the contribution of the turbine to the overall sound level using the ACP Reference Sound Pressure Level. Equation 2 can be used to add the turbine sound level to the background sound level to obtain the overall sound level. $$turbinesoundlevel = L_{ACP} + 10 \log(4\pi 60^2) - 10 \log(4\pi R^2)$$ (1) #### Where: L_{ACP} is the ACP Reference Sound Pressure Level [dB(A)]. R is the observer distance from the turbine rotor center [m] overall sound level = $$10\log(10^{\frac{turbine\ level}{10}} + 10^{\frac{background\ level}{10}})$$ (2) Table 1 Overall Sound Levels at Different Locations for an ACP Reference Sound Pressure Level of 40 dB(A) | Distance | L _{ACP} : 40 dBA | | | | | |------------|---------------------------|-------------------------------|------|------|------| | from rotor | b | background noise level (dBA): | | | | | center [m] | 30 | 35 | 40 | 45 | 50 | | 10 | 55.6 | 55.6 | 55.7 | 55.9 | 56.6 | | 20 | 49.6 | 49.7 | 50.0 | 50.9 | 52.8 | | 30 | 46.1 | 46.4 | 47.0 | 48.6 | 51.5 | | 40 | 43.7 | 44.1 | 45.1 | 47.3 | 50.9 | | 50 | 41.9 | 42.4 | 43.9 | 46.6 | 50.6 | | 60 | 40.4 | 41.2 | 43.0 | 46.2 | 50.4 | | 70 | 39.2 | 40.2 | 42.4 | 45.9 | 50.3 | | 80 | 38.2 | 39.4 | 41.9 | 45.7 | 50.2 | | 100 | 36.6 | 38.3 | 41.3 | 45.5 | 50.2 | | 150 | 34.1 | 36.8 | 40.6 | 45.2 | 50.1 | | 200 | 32.8 | 36.1 | 40.4 | 45.1 | 50.0 | Table 2 Overall Sound Levels at Different Locations for an ACP Reference Sound Pressure Level of 45 dB(A) | Distance | L _{ACP} : 45 dB(A) background noise level [dB(A)]: | | | | | |------------|---|------|------|------|------| | from rotor | | | | | | | center [m] | 30 | 35 | 40 | 45 | 50 | | 10 | 60.6 | 60.6 | 60.6 | 60.7 | 60.9 | | 20 | 54.6 | 54.6 | 54.7 | 55.0 | 55.9 | | 30 | 51.1 | 51.1 | 51.4 | 52.0 | 53.6 | | 40 | 48.6 | 48.7 | 49.1 | 50.1 | 52.3 | #### ACP 101-1 a1-202x | 50 | 46.7 | 46.9 | 47.4 | 48.9 | 51.6 | |-----|------|------|------|------|------| | 60 | 45.1 | 45.4 | 46.2 | 48.0 | 51.2 | | 70 | 43.8 | 44.2 | 45.2 | 47.4 | 50.9 | | 80 | 42.7 | 43.2 | 44.4 | 46.9 | 50.7 | | 100 | 40.9 | 41.6 | 43.3 | 46.3 | 50.5 | | 150 | 37.8 | 39.1 | 41.8 | 45.6 | 50.2 | | 200 | 35.9 | 37.8 | 41.1 | 45.4 | 50.1 | Table 3 Overall Sound Levels at Different Locations for an ACP Reference Sound Pressure Level of 50 dB(A) | Distance | L _{ACP} : 50 dB(A)
background noise level [dB(A)]: | | | | | |------------|--|------|------|------|------| | from rotor | | | | |)]: | | center [m] | 30 | 35 | 40 | 45 | 50 | | 10 | 65.6 | 65.6 | 65.6 | 65.6 | 65.7 | | 20 | 59.5 | 59.6 | 59.6 | 59.7 | 60.0 | | 30 | 56.0 | 56.1 | 56.1 | 56.4 | 57.0 | | 40 | 53.5 | 53.6 | 53.7 | 54.1 | 55.1 | | 50 | 51.6 | 51.7 | 51.9 | 52.4 | 53.9 | | 60 | 50.0 | 50.1 | 50.4 | 51.2 | 53.0 | | 70 | 48.7 | 48.8 | 49.2 | 50.2 | 52.4 | | 80 | 47.6 | 47.7 | 48.2 | 49.4 | 51.9 | | 100 | 45.7 | 45.9 | 46.6 | 48.3 | 51.3 | | 150 | 42.3 | 42.8 | 44.1 | 46.8 | 50.6 | | 200 | 40.0 | 40.9 | 42.8 | 46.1 | 50.4 | Table 4 Overall Sound Levels at Different Locations for an ACP Reference Sound Pressure Level of 55 dB(A) | Distance | L _{ACP} : 55 dB(A) | | | | | |------------|-----------------------------|---------------------------------|------|------|------| | from rotor | ba | background noise level [dB(A)]: | | | | | center [m] | 30 | 35 | 40 | 45 | 50 | | 10 | 70.6 | 70.6 | 70.6 | 70.6 | 70.6 | | 20 | 64.5 | 64.5 | 64.6 | 64.6 | 64.7 | | 30 | 61.0 | 61.0 | 61.1 | 61.1 | 61.4 | | 40 | 58.5 | 58.5 | 58.6 | 58.7 | 59.1 | | 50 | 56.6 | 56.6 | 56.7 | 56.9 | 57.4 | | 60 | 55.0 | 55.0 | 55.1 | 55.4 | 56.2 | | 70 | 53.7 | 53.7 | 53.8 | 54.2 | 55.2 | | 80 | 52.5 | 52.6 | 52.7 | 53.2 | 54.4 | | 100 | 50.6 | 50.7 | 50.9 | 51.6 | 53.3 | | 150 | 47.1 | 47.3 | 47.8 | 49.1 | 51.8 | | 200 | 44.7 | 45.0 | 45.9 | 47.8 | 51.1 | Figure 1 Sound levels as a function of distance and background noise levels for an ACP Reference Sound Pressure Level of 40 dB(A) Figure 2 Sound levels as a function of distance and background noise levels for an ACP Reference Sound Pressure Level of 45 dB(A) Figure 3 Sound levels as a function of distance and background noise levels for an ACP Reference Sound Pressure Level of 50 dB(A) #### The Small Wind Turbine Standard Figure 4 Sound levels as a function of distance and background noise levels for an ACP Reference Sound Pressure Level of 55 dB(A) # **Appendix B** #### **Conformity Assessment** The requirements in this appendix are related to the process of certification to this standard and are thus not technical requirements. - 1. Small wind turbines certified to this standard shall be evaluated by a certification body (CB) accredited to ISO/IEC 17065 with ACP 101-1-2021 in their scope. - 2. To maintain validity of a small wind turbine certification, the certification body shall utilize the following surveillance activities: - a. An initial factory inspection followed by an inspection every two years; - b. Field inspections of a sample of certified turbines per the Routine Inspection requirements of IEC 61400-2 ed. 3 section 11.2.5.3 with the following additional requirements: - i. Sample size shall be five (5) turbines at different sites; turbines chosen by OEM and CB. - ii. Inspections shall be performed annually by a party chosen by the OEM and CB (e.g. the installer or service provider). - iii. The duration of the annual field inspections period shall be three (3) years. After the third consecutive field inspection is complete, per turbine, the inspection requirement is satisfied and the certification will be maintained through annual reporting, as listed in 2.a, 2.c and 2.d. - iv. Inspection reports shall include photos of major components, as identified by the OEM and CB, and any signs of cracking, degradation or significant wear. #### ACP 101-1 a1-202x #### The Small Wind Turbine Standard - v. Report annual energy production and estimated annual average hub wind speed. Provide the source of wind speed estimate, e.g. NREL Wind Prospector or turbine-mounted anemometer. - c. Annual reporting of all design changes, field failures, complaints, and sales. - d. Significant design changes and safety related field failures shall be
reported to the CB without delay. - 3. Test data from the turbine manufacturer may be accepted if witnessed by the certification body. - 4. The following guidance on changes to a turbine design that may require re-certification was adapted from IEC Certification Advisory Committee clarification sheet number CBC 4C: Modifications to a certified wind turbine are permitted only if they do not change or affect the principal characteristics or if they change or affect the principal characteristics within the extent specified in the applicable design code or standard. Below are examples of changes which will normally require re-testing: - a. a change in rotor diameter by more than 5% - b. a change in rotor rotational speed by more than 5% - c. a different design of safety system - d. a different way of limiting the power output - e. modified blade profiles - f. modifications which lead to a significant increase in the load spectrum - g. increase of the rated power output by more than 5% The impact on loads and strength shall be evaluated for any change in rotor diameter, rotor speed and/or power output. Additional measurements and tests may thus be avoided. #### Conformity assessment components per turbine rating The technical requirements for conformity assessment are dependent on the wind turbine Peak Power rating. The table below <u>shows-summarizes</u> the required and permitted elements of certification to this standard. | | Micro
wind
turbines
up to 1 kW
Peak
Power | 1-30 kW
Peak Power | 30-65 kW
Peak Power | 65-150 kW
Peak Power | |--|--|--|---|---| | STRUCTURA | AL DESIGN | | | | | SLM | Not
required | Not
recommended
for turbines with
Peak Power
greater than 10
kW | Not allowed | Not allowed | | Acroelasti
e
Simulation
model | Not
required | Allowed with validation through power, rotor speed. Validate weight of major | Allowed with validation through power, rotor speed, blade first flapwise (static) | Allowed with validation through power, rotor speed, blade first flapwise (static) natural frequency, tower loads*. Validate weight of major components.Required | #### ACP 101-1 a1-202x | | | components.Allo
wed | natural
frequency*.
Validate weight
of major
components.Re
quired | | |-------------------------------|-----------------|--------------------------------------|--|---| | Structural Analysis | Not required | Required | Required | Required | | TYPE TESTI | NG | | | | | -Duration
Testing | Required | Required | Required | Required | | Power
Performan
ce | Required | Required | Required | Required | | Loads
Valuation
Testing | Not
required | Not
requiredRequire
d. See 5.7 | Required. See 5.7Not required | Required. See 5.7Required (only load components listed for aeroelastic model validation, see above) | | Acoustics
Testing | Not required | Required | Required | Required | | Safety and Function Testing | Required | Required | Required | Required | | Blade
Testing | Not
required | Static test required | Static test required | Static test required;
accelerated fatigue testing
according to IEC 61400-23 is
not required but is
encouraged | | Labeling | Required | Required | Required | Required | ^{*} for passive-yaw machines, yaw behavior should be validated