ACP 1000-2.2-202x
Rescue and Fall Protection Standard: Rescue Training Requirements

January 2022

AMERICAN CLEAN POWER ASSOCIATION
Standards Committee
AMERICAN NATIONAL STANDARD

Approval of an American National Standard requires verification by ANSI that the requirements for due process, consensus, and other criteria for approval have been met by the standards developer. Consensus is established when, in the judgment of the ANSI Board of Standards Review, substantial agreement has been reached by directly and materially affected interests. Substantial agreement means much more than a simple majority, but not necessarily unanimity.

Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution.

The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from manufacturing, marketing, purchasing, or using products, processes, or procedures not conforming to the standards.

The American National Standards Institute does not develop standards and will in no circumstances give an interpretation of any American National Standard. Moreover, no person shall have the right or authority to issue an interpretation of an American National Standard in the name of the American National Standards Institute. Requests for interpretations should be addressed to the secretariat or sponsor whose name appears on the title page of this standard.

Caution Notice: This American National Standard may be revised or withdrawn at any time. The procedures of the American National Standards Institute require that action be taken periodically to reaffirm, revise, or withdraw this standard. Purchasers of American National Standards may receive current information on all standards by calling or writing the American National Standards Institute, 11 West 42nd Street, New York, NY, 10036, phone (212) 642-4900.

AMERICAN CLEAN POWER ASSOCIATION STANDARDS

Standards promulgated by the American Clean Power Association (ACP) conform to the ACP Standards Development Procedures adopted by the ACP Board of Directors. The procedures are intended to ensure that ACP standards reflect a consensus to persons substantially affected by the standard. The ACP Standards Development Procedures are intended to be in compliance with the American National Standards Institute (ANSI) Essential Requirements. Standards developed under the ACP Standards Development Procedures are intended to be eligible for adoption as American National Standards.

Attribution: No part of this standard may be reproduced or utilized in any form without proper attribution to the American Clean Power Association. Credit should be acknowledged as follows: “ACP 1000-2.2-202x Rescue and Fall Protection Standard: Rescue Training Requirements© The American Clean Power Association.”

Disclaimer: ACP Standards are developed through a consensus process of interested parties administered by the American Clean Power Association. ACP cannot be held liable for products claiming to be in conformance with this standard.

Published by:
American Clean Power Association
1501 M Street, N.W.,
Suite 900
Washington D.C. 20005
www.cleanpower.org

© Copyright 2021 by the American Clean Power Association. All rights including translation into other languages, reserved under the Universal Copyright Convention, the Berne Convention for the Protection of Literary and Artistic Works, and the International and Pan American Copyright Conventions.
NOTICE AND DISCLAIMER

The American Clean Power Association (“ACP”) has provided this Document for the use subject to important notices and legal disclaimers. This Document is proprietary and its use is subject to a legally binding license agreement and disclaimer (“Agreement”) described herein and available on ACP’s website at https://cleanpower.org/standards-development/, which may be updated from time to time. Do not use this Document for any purpose unless and until you read the agreement. By viewing or otherwise using this Document, you hereby warrant and represent that you have read and agree to be legally bound by the agreement and are authorized to bind not only yourself to the agreement, but the organization for which you are accessing this Document.

Notice and Disclaimer Concerning ANSI Process

Certain ACP standards and best practice publications, of which the Document contained herein is one, are developed through a voluntary consensus standards development process. ACP administered the process in accordance with the procedures of the American National Standards Institute (ANSI) to promote fairness in the development of consensus. This process brings together volunteers and/or seeks out the views of persons who have an interest in the topic covered by this Document. The information in this Document was considered technically sound by the consensus of persons engaged in the development and approval of the Document at the time it was developed. Consensus does not necessarily mean that there is unanimous agreement among every person participating in the development of this Document.

Notice and Disclaimer Concerning Accuracy of Information and Liability Concerning the Use of ACP Publications

Every effort has been made to assure the accuracy and reliability of the data and information contained in this Document; however, ACP does not write this Document and it does not independently test, evaluate or verify the accuracy or completeness of any information or the soundness of any judgments contained in its publications. ACP disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein.

In publishing and making this Document available, ACP is not undertaking to render professional or other services for or on behalf of any person or entity. This Document, and ACP publications in general, necessarily address problems of a general nature. ACP disclaims and makes no guaranty or warranty, express or implied, as to the accuracy or completeness of any information published herein, and disclaims and makes no warranty that the information in this Document or its other publications will fulfill any of your particular purposes or needs. ACP does not undertake to guarantee the performance of any individual manufacturer or seller’s products or services by virtue of this Document.

Users of this Document should not rely exclusively on the information contained in this Document and should apply sound business, scientific, engineering, and safety judgment in employing the information contained herein or, as appropriate, seek the advice of a competent professional in determining the exercise of reasonable care in any given circumstances. Information and other standards on the topic covered by this Document may be available from other sources, which the user may wish to consult for additional views or information not covered by this Document.

Use of this Document is strictly voluntary. ACP has no power, nor does it undertake to police or enforce compliance with the contents of this Document. ACP does not certify, test or inspect products, designs or installations for safety or health purposes. Any certification or other statement of compliance with any health or safety–related information in this Document shall not be attributable to ACP and is solely the responsibility of the certifier or maker of the statement.

ACP disclaims liability for any personal injury, property or other damages of any nature whatsoever, whether special, indirect, consequential or compensatory, directly or indirectly resulting from the publication, use of, application, or reliance on this Document or on any of its other publications, even if advised of the possibility of such damage and regardless of whether such damage was foreseeable. In
addition, ACP does not warrant or represent that the use of the material contained in this Document is free from patent infringement. ACP publications are supplied “AS IS” and “WITH ALL FAULTS.”

Laws & Regulations
When using this Document, local, state and federal laws and regulations should be reviewed. Compliance with the provisions this Document does not constitute compliance to any applicable legal requirements. In making its publications and this Document available, ACP does not intend to urge action that is not in compliance with applicable laws, and these documents may not be construed as doing so. Users of this Document and other ACP publications should take into account state, local, Federal, or international data privacy and data ownership requirements in the context of assessing and using the publications in compliance with applicable legal requirements.
ACP Environmental, Health, and Safety Standards Committee members, at the time the standard was approved:

<table>
<thead>
<tr>
<th>Organization</th>
<th>Primary</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acciona Energy USA Global LLC</td>
<td>Karl Delooff</td>
<td>Andrew Ritger</td>
</tr>
<tr>
<td>Alimak Group USA Inc.</td>
<td>Luke Metzinger</td>
<td></td>
</tr>
<tr>
<td>ALLETE</td>
<td>Heather Cooke</td>
<td></td>
</tr>
<tr>
<td>Alliant Energy</td>
<td>Kent Sodawasser</td>
<td>Jon Nietzel</td>
</tr>
<tr>
<td>Allsafe Elevator Inspections LLC</td>
<td>Theresa Tsamoutalis</td>
<td></td>
</tr>
<tr>
<td>Avangrid Renewables</td>
<td>David Labelle</td>
<td>Kristy Abel</td>
</tr>
<tr>
<td>Clearway Energy Group</td>
<td>Jeff Court</td>
<td>Jeff Sampeeer</td>
</tr>
<tr>
<td>Deutsche Windtechnik Inc.</td>
<td>Patrick Lavell</td>
<td>Russell Leach</td>
</tr>
<tr>
<td>EDP Renewables North America LLC</td>
<td>Prashant Krishnan</td>
<td></td>
</tr>
<tr>
<td>EGE Haina</td>
<td>Ramon Then</td>
<td>Mariano Inchaustegui</td>
</tr>
<tr>
<td>Elevator Industry Work Preservation Fund</td>
<td>Carisa Barrett</td>
<td>Eric Rogers</td>
</tr>
<tr>
<td>Enel Green Power North America Inc.</td>
<td>Adam Sotirakopulos</td>
<td>Scott Bramlett</td>
</tr>
<tr>
<td>Ensa North America</td>
<td>Rob Siegel</td>
<td>Nicholas Jones</td>
</tr>
<tr>
<td>FieldCore - A GE Company</td>
<td>Chris McKee</td>
<td>Michael Kelley</td>
</tr>
<tr>
<td>Firetrace International</td>
<td>Angela Krcmar</td>
<td></td>
</tr>
<tr>
<td>GE Renewable Energy</td>
<td>Daniel Olson</td>
<td></td>
</tr>
<tr>
<td>Goldwind Americas</td>
<td>Doug Schultz</td>
<td></td>
</tr>
<tr>
<td>High Plains Technology Center</td>
<td>James Tew</td>
<td>Taylor Burnett</td>
</tr>
<tr>
<td>HSB - Hartford Steam Boiler</td>
<td>Linkesh Diwan</td>
<td>Simon Krebs</td>
</tr>
<tr>
<td>Infrastructure & Energy Alternatives, Inc.</td>
<td>Kevin Turner</td>
<td>Terry Pedigo</td>
</tr>
<tr>
<td>Iowa Lakes Electric Cooperative</td>
<td>Alden Zeitz</td>
<td></td>
</tr>
<tr>
<td>Kalamazoo Valley Community College</td>
<td>Thomas Sutton</td>
<td></td>
</tr>
<tr>
<td>Leeward Renewable Energy</td>
<td>Grayling Vander Velde</td>
<td></td>
</tr>
<tr>
<td>Liberty</td>
<td>Ester Di Giovanni</td>
<td>Matthew Macdonald</td>
</tr>
<tr>
<td>Mortenson</td>
<td>Chris Daniels</td>
<td>Kevin Hogan</td>
</tr>
<tr>
<td>National Grid Renewables</td>
<td>Gemma Smith</td>
<td>Zach Chamberlain</td>
</tr>
<tr>
<td>Ørsted Onshore North America</td>
<td>Diego Ramirez</td>
<td></td>
</tr>
<tr>
<td>Orsted Wind Power North America LLC</td>
<td>David Yang</td>
<td></td>
</tr>
<tr>
<td>Pattern Energy Group Services, LP</td>
<td>Robert Milligan</td>
<td></td>
</tr>
<tr>
<td>Run Energy LP</td>
<td>Alan Nelson</td>
<td>Shawn St. Cyr</td>
</tr>
<tr>
<td>RWE Renewables Americas, LLC</td>
<td>Ryan Dove</td>
<td>Chris Jenkins</td>
</tr>
<tr>
<td>Shermco Industries</td>
<td>Kevin Alewine</td>
<td>Kyle P. Kirkpatrick</td>
</tr>
<tr>
<td>Siemens Gamesa Renewable Energy</td>
<td>Wesley Witt</td>
<td>Von Bui</td>
</tr>
<tr>
<td>SKYLOTECE North America LP</td>
<td>Kurani Seyhan</td>
<td>Douglas Mercier</td>
</tr>
<tr>
<td>Tech Safety Lines Inc.</td>
<td>Reggie Ham</td>
<td></td>
</tr>
<tr>
<td>Tempest Group Inc.</td>
<td>Cynthia E. Cuenin</td>
<td>Dave Smith</td>
</tr>
<tr>
<td>Tetra Tech Inc.</td>
<td>Ron Beck</td>
<td></td>
</tr>
<tr>
<td>TUF-TUG Products</td>
<td>Joey Deuer</td>
<td></td>
</tr>
</tbody>
</table>
ACP 1000-2.2-202x Rescue and Fall Protection Standard: Rescue Training Requirements

<table>
<thead>
<tr>
<th>Company</th>
<th>First Name</th>
<th>Last Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wanzek Construction</td>
<td>Barry</td>
<td>Morris</td>
</tr>
<tr>
<td>World Wind & Solar</td>
<td>Dwayne</td>
<td>Kitchen</td>
</tr>
<tr>
<td></td>
<td>Dave</td>
<td>Moore</td>
</tr>
</tbody>
</table>
ACP Rescue and Self-Evacuation Subcommittee members, at the time the standard was approved:

<table>
<thead>
<tr>
<th>Organization</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clearway Energy Group</td>
<td>Jeff Court</td>
</tr>
<tr>
<td>High Plains Technology Center</td>
<td>James Tew</td>
</tr>
<tr>
<td>Kalamazoo Valley Community College</td>
<td>Thomas Sutton</td>
</tr>
<tr>
<td>Liberty</td>
<td>Ester Di Giovanni</td>
</tr>
<tr>
<td>Mortenson</td>
<td>Scott Stuessy</td>
</tr>
<tr>
<td>Robur Group USA</td>
<td>Ron Crabbe</td>
</tr>
<tr>
<td>Run Energy LP</td>
<td>Alan Nelson</td>
</tr>
<tr>
<td>Shermco Industries</td>
<td>Kyle P. Kirkpatrick</td>
</tr>
<tr>
<td>Siemens Gamesa Renewable Energy</td>
<td>Peter Lukens</td>
</tr>
<tr>
<td>SKYLOTEC North America LP</td>
<td>Kurani Seyhan</td>
</tr>
<tr>
<td>Tech Safety Lines Inc.</td>
<td>Reggie Ham</td>
</tr>
<tr>
<td>World Wind & Solar</td>
<td>Dave Moore</td>
</tr>
</tbody>
</table>
FOREWORD

The Foreword section is included with this document for information purposes only and are not part of the American Clean Power Association (ACP) ACP 1000-2.2-202x Rescue and Fall Protection Standard: Rescue Training Requirements.

Foreword

This standard, national in scope, was developed by an Accredited Standards Committee functioning under the procedures of the American National Standards Institute (ANSI), with the American Clean power Association (ACP) as Secretariat.

It is intended that every employer whose operations fall within the scope and purpose of the standard will adopt the guidelines and requirements detailed in this standard.

The need for this standard activity grew out of the American wind energy industry’s desire to help define minimum training requirements for fall protection and rescue within the wind industry. The focus is to provide the tools with which employers may develop training programs that incorporate those elements. This standard can also be used to help evaluate third party training to ensure it meets minimum requirements. This standard applies to occupational activities. It does not apply to sports activities such as mountaineering.

Neither the Standards Committee, nor the Secretariat, states that this standard is perfect or in its ultimate form. It is recognized that new developments are to be expected, and that revisions of the standard will be necessary as the state-of-the-art progresses and further experience is gained. It is felt, however, that uniform guidelines for fall protection and rescue in the wind industry is very much needed and that the standard in its present form provides for the minimum criteria necessary to develop and implement a comprehensive training program for fall protection and rescue within the American wind energy industry.

Basic fall safety principles have been incorporated into these standards, including hazard survey, hazard elimination and control, and education and training. The primary intent is to ensure a proactive approach to fall protection and rescue training within the American wind energy industry.

The Rescue and Self-Evacuation Subcommittee solicits public input that may suggest the need for revisions to this standard. Such input should be sent to the Secretariat, American Clean Power Association, 1501 M St. NW Suite 900, Washington DC 20005 or standards@cleanpower.org.

This standard was developed by the Rescue and Self-Evacuation Subcommittee and approved by the Environmental, Health, and Safety Standards Committee for submittal to ANSI. Committee approval of the standard does not necessarily imply that all committee members voted for its approval.
Table of Contents

1. **General Information** .. 9
 1.1 Purpose ... 9
 1.2 Scope ... 9
 1.3 Exceptions .. 9
 1.4 Interpretations ... 9

2. **Definitions** .. 9

3. **List of Acronyms** ... 9

4. **Adherence to Regulations** ... 10

5. **Types of Rescue** ... 10

6. **Training Requirements by Type of Rescue** ... 11
1 General Information

1.1 Purpose

This standard addresses definitions and nomenclature used for the ACP 1000-2 202X Rescue and Fall Protection Training Standard in the American wind energy industry.

E1.1 This standard identifies the recommended minimum training guidelines for persons rescuing in wind turbines and associated structures within the American wind energy industry. These guidelines have been developed through cooperative discussions with American Clean Power Association (ACP) membership representing a cross section of the industry.

This standard is the recommended minimum guidelines for a training program which includes shared best practices from many member companies in the American wind energy industry, and are only meant to be a guideline when evaluating, creating or enhancing a training program. Employers are encouraged to make additions to the guidelines where company policy or regulations require a more protective level of training.

1.2 Scope

1.2.1 This standard identifies the recommended minimum training guidelines for persons rescuing in wind turbines and associated structures within the American wind energy industry.

1.3 Exceptions

1.3.1 The scope of these standards do not include window cleaner belts or sports-related activities.

1.3.2 Body belts, window cleaner belts, chest-waist harnesses and chest harnesses, even when referred to as body supports, are not addressed by the provisions of this standard.

1.3.3 Systems that incorporate horizontal lifelines and personal protective systems for activities such as climbing, man riding, work positioning, rescue and evacuation may suitably incorporate components or subsystems specified herein. When incorporated into such systems, however, those systems, subsystems and components are not within the scope of these standards when used for recreational purposes.

1.4 Interpretations

1.4.1 Requests for interpretations of this standard shall be made in writing to the Secretariat of this standard.

2 Definitions

Definitions used in this standard are found in ACP 1000-2.1-202x Definitions and Nomenclatures Standard in the American wind energy industry.

3 List of Acronyms

Acronyms used in this standard are found in ACP 1000-2.1-202x Definitions and Nomenclatures Standard in the American wind energy industry.
4 Adherence to Regulations

4.1 This standard requires adherence to State and Federal regulations governing fall hazards in the workplace.

4.2 Where this standard appears to conflict with State or Federal regulations, such State or Federal regulations shall prevail.

4.3 Employers are not prohibited from adding protective requirements beyond what State and Federal regulations require, so long as the additions are at least as protective as the regulation(s).

E 4.3 Occupational Safety and Health Administration regulations are found in 29 CFR 1910 Subparts D and I, and 29 CFR 1926 Subpart M. Additional regulations which may apply are found in 29 CFR 1910.269. ANSI Z359, current revision, should be referenced when considering backup systems. Some State plans may have additional requirements for control of fall hazards.

Section 5(a)1 of the OSH act also requires employers to identify hazards, both real and predicted, in the workplace and put controls in place to mitigate those hazards. Where the regulations are silent, consensus standards and company policies shall be used to mitigate the identified and predicted hazards in the workplace.

4.4 Equipment used in fall protection and rescue has weight limits which have been identified for testing and certifying operation of the equipment in preventing and arresting falls from height while complying with regulations.

4.4.1 Fall protection and rescue equipment shall meet the requirements of ANSI Z359, current revision.

4.4.1.1 A person using this equipment shall not weigh less than 130 lbs. or more than 310 lbs. when equipped to climb with all the required personal protective equipment (PPE), clothing, and required pieces of equipment.

E 4.4.1.1 An employer wishing to have a climber outside of the certified performance weight range of any piece of equipment, certified to ANSI Z359, would have to have such equipment tested and certified to provide at least the level of performance the equipment was designed for, and be able to adhere to established OSHA and industry standards while using the equipment.

4.5 Employers should implement a risk-based assessment for activities which require persons to climb turbines and put risk mitigation procedures in place prior to the activity commencing.

E 4.5 A risk-based assessment is meant to identify factors which could affect the safety of the climbers. Factors such as physical, mental, skill level, experience of the climber and equipment limitations must be considered when assessing the risk of a turbine climbing activity.

Service lifts and climb assist systems should be treated as if they will not be available and therefore, the risk assessment should be made with this hazard as a possibility. Without a lift or assist device, the risk assessment should be formulated with a self-powered climb up and down the tower as a requirement.

5 Types of Rescue

5.1 Vertical Rescue describes a movement that is vertical in direction.
E 5.1 Many rescue systems can be used as passive, active or both. Employers are encouraged to select equipment which supports their risk assessment for the job assignments and the likelihood of using a rescue system in a specific mode of operation.

5.2 Horizontal Rescue describes a movement that is horizontal in direction.

5.3 Self-Rescue describes the movements an individual would use to rescue themselves.

E 5.3 Self-Rescue most commonly describes self-evacuation where the individual would use equipment to escape from a dangerous condition from a location at height.

Self-Rescue may also include the ability to rescue from other dangerous situations such as hanging from fall arrest lanyards after a fall has been arrested.

6 Training Requirements by Type of Rescue

6.1 Vertical Rescue training requirements shall include the following:

6.1.1 Demonstrate the ability to inspect and package the rescue system using manufacturer’s documentation.

6.1.2 Demonstrate an understanding of the employer rescue plan.

E 6.1.2 Employers are encouraged to have a rescue plan prepared before assigning employees to job assignments where a rescue may be required. Employees should be trained to understand the elements of the rescue plan and how they fit into the plan in an emergency.

6.1.3 Demonstrate the ability to perform a scene assessment and identify hazards which could endanger the rescue members or the victim requiring rescue.

E 6.1.3 This requirement is beyond the traditional hazard analysis which may have been created before the emergency requiring vertical rescue occurred. When an emergency occurs in a wind turbine, the hazard which created the emergency must be identified and controlled so that rescuers are not exposed to the same hazard.

Rescue operations may also create additional hazards that might not be present before the emergency occurred. Hazardous energy, enclosed spaces, environmental and human factors should be identified and controlled to prevent further injury to the victim as well as potential injuries to the rescue members.

6.1.4 Demonstrate the ability to identify the method for vertical rescue.

6.1.4.1 Identify the route of vertical rescue.

6.1.4.1.1 Be able to describe vertical routes in a tower.

6.1.4.1.2 Be able to describe vertical routes from a nacelle.

6.1.4.1.3 Be able to describe vertical routes from the hub.

6.1.4.2 Identify equipment function(s) required to accomplish the vertical rescue.

6.1.4.2.1 Identify mechanical advantage requirements to perform a lift of the victim.

6.1.4.2.2 Identify device functional requirements to complete a controlled lowering of the victim.

6.1.4.2.3 Identify additional pieces of equipment which may be required to support the raising or lowering of a victim.

E 6.1.4.2.3 There are many different rescue systems in use within the American wind energy industry. Each system may be made up of different parts that are used to accomplish the same task of raising and controlled lowering of a victim.
Employers are encouraged to train their personnel on the system or systems their employees will be assigned to use during their role as a rescue team member.

6.1.4.2.4 Identify the requirements for packaging the victim to complete the vertical rescue.

E 6.1.4.2.4 Victim packaging requirements for a rescue may vary depending on the type of injury, location in the turbine and possible damage to personal fall protection equipment. Employers are encouraged to develop guidelines which help establish criteria for rescue equipment which meets the needs for the types of anticipated victim movements in the wind turbines they have employees assigned to.

6.1.5 Demonstrate setting up the rescue equipment for a vertical rescue.

6.1.5.1 Demonstrate identifying an anchor of suitable strength.

E 6.1.5.1 Rescue anchors are selected for a static load use. Typical anchor strength requirements are for supporting a maximum of 2 persons, with a maximum weight of 310 lbs. per person and a 5:1 safety factor. This suggests that rescue anchors should be selected to support 3,100 lbs. for a 2-person load.

6.1.5.2 Demonstrate connecting the rescue system to the anchor using the manufacturer’s recommended method.

E 6.1.5.2 Certain rigging configurations can multiply forces on the rigging and the anchors. Employers are encouraged to identify sling angles which multiply forces beyond what the equipment is designed to withstand and establish criteria which maintains an acceptable safety margin.

6.1.5.3 Demonstrate connection of the rescue system to the victim or the packaging system following manufacturer’s recommended method.

6.1.5.4 Demonstrate lifting the victim using the rescue system mechanical advantage mechanism.

E 6.1.5.4 Rescue systems used in the American wind energy industry have different methods of mechanical advantage application. Some mechanical advantage systems are used in series or parallel with the main rescue system component and others have the mechanical advantage contained within the primary rescue system components.

Employers are encouraged to train the types of mechanical advantage systems their employees will be assigned to use as part of a rescue. Manufacturer’s documentation will identify how the mechanical advantage is to be used with the rescue device.

6.1.5.5 Demonstrate lowering the victim while maintaining control of the descent speed.

6.1.5.6 Demonstrate maneuvering the victim around and through obstacles while raising and descending.

E 6.1.5.6 There are many ways to maneuver a victim in descent. Some of these can include other mechanical systems and components to move the victim, devices which work on the loaded line to move the victim, and simply having another rescuer manually handling the victim. Some packaging systems incorporate devices to allow for changing the position of the victim from horizontal to vertical and any position in between.

Employers are encouraged to have training requirements for the method that they have chosen to use if maneuvering the victim is required in the vertical rescue.

6.1.5.7 Demonstrate slowing the descent speed as the victim approaches the point of landing on a surface.

6.1.5.8 Demonstrate landing the victim on a surface while maintaining control of the rescue system.
6.1.5.9 Explain hazards to the victim and others who may be directly below the point of lowering.
6.1.5.9.1 Explain steps that can be taken to reduce the risks to the victim and others who may be located below the point of lowering.

6.1.5.10 Demonstrate effective communication throughout the vertical rescue.

6.1.5.11 Demonstrate regular checks on victim condition throughout the vertical rescue.

6.2 Horizontal rescue training requirements shall contain the following:

6.2.1 Demonstrate the ability to inspect and package the rescue system using manufacturer’s documentation.

6.2.2 Demonstrate an understanding of the employer rescue plan.

E 6.2.2 Employers are encouraged to have a rescue plan prepared before assigning employees to job assignments where a rescue may be required. Employees should be trained to understand the elements of the rescue plan and how they fit into the plan in an emergency.

6.2.3 Demonstrate the ability to perform a scene assessment and identify hazards which could endanger the rescue members or the victim requiring rescue.

E 6.2.3 This requirement is beyond the traditional hazard analysis which may have been created before the emergency requiring horizontal rescue occurred. When an emergency occurs in a wind turbine, the hazard which created the emergency must be identified and controlled so that rescuers are not exposed to the same hazard.

Rescue operations may also create additional hazards that might not be present before the emergency occurred. Hazardous energy, enclosed spaces, environmental and human factors should be identified and controlled to prevent further injury to the victim as well as potential injuries to the rescue members.

6.2.4 Demonstrate the ability to identify the method of horizontal rescue.

6.2.4.1 Identify the route of horizontal rescue.

6.2.4.2 Be able to describe horizontal routes in a tower.

6.2.4.3 Be able to describe horizontal routes in a nacelle.

6.2.4.4 Be able to describe horizontal routes in a hub.

6.2.5 Identify equipment function(s) required to accomplish the horizontal rescue.

6.2.5.1 Identify mechanical advantage requirements to move the victim horizontally.

6.2.5.2 Identify the device functional requirements to move the victim horizontally while maintaining control.

E 6.2.5.2 Once a victim is moved horizontally away from an overhead anchor, a risk of uncontrolled swing is introduced to the rescue. Employers are encouraged to develop procedures which describe how to minimize a potential uncontrolled swing of the victim while moving them horizontally.

6.2.5.3 Identify additional pieces of equipment which may be required to support the horizontal movement of the victim.

E 6.2.5.3 There are many different rescue systems in use within the American wind energy industry. Each system may be made up of different parts that are used to accomplish the same task of moving a victim horizontally.

Employers are encouraged to train their personnel on the system or systems their employees will be assigned to use during their role as a rescue team member.
6.2.5.4 Identify the requirements for packaging the victim to complete the horizontal rescue.

E 6.2.5.4 Victim packaging requirements for a rescue may vary depending on the type of injury, location in the turbine and possible damage to personal fall protection equipment.

Employers are encouraged to develop guidelines which help establish criteria for rescue equipment which meets the needs for the types of anticipated victim movements in the wind turbines they have employees assigned to.

6.2.6 Demonstrate setting up the rescue equipment for a horizontal rescue.

6.2.6.1 Demonstrate identifying an anchor of suitable strength.

E 6.2.6.1 Rescue anchors are selected for a static load use. Typical anchor strength requirements are for supporting a maximum of 2 persons, with a maximum weight of 310 lbs. per person and a 5:1 safety factor. This suggests that rescue anchors should be selected to support 3,100 lbs. for a 2-person load.

6.2.6.2 Demonstrate connecting the rescue system to the anchor using the manufacturer’s recommended method.

E 6.2.6.2 Certain rigging configurations can multiply forces on the rigging and the anchors. Employers are encouraged to identify sling angles which multiply forces beyond what the equipment is designed to withstand and establish criteria which maintains an acceptable safety margin.

6.2.6.3 Demonstrate connection of the rescue system to the victim or the packaging system following manufacturer’s recommended method.

6.2.6.4 Demonstrate moving the victim horizontally using the rescue system mechanical advantage mechanism.

E 6.2.6.4 Rescue systems used in the American wind energy industry have different methods of mechanical advantage application. Some mechanical advantage systems are used in series or parallel with the main rescue system component and others have the mechanical advantage contained within the primary rescue system components.

Employers are encouraged to train the types of mechanical advantage systems their employees will be assigned to use as part of a rescue. Manufacturer’s documentation will identify how the mechanical advantage is to be used with the rescue device.

6.2.6.5 Demonstrate moving the victim while maintaining control of the speed.

6.2.6.6 Demonstrate maneuvering the victim around and through obstacles while moving horizontally.

E 6.2.6.6 There are many ways to maneuver a victim in a horizontal movement. Some of these can include other mechanical systems and components to move the victim, devices which work on the loaded line to move the victim and another rescuer manually handling the victim. Some packaging systems incorporate devices to allow for changing the position of the victim from horizontal to vertical and any position in between.

Employers are encouraged to have training requirements for the method that they have chosen to use if maneuvering the victim is required in the horizontal rescue.

6.2.6.7 Demonstrate slowing the horizontal speed as the victim approaches the point of landing on a surface.

6.2.6.8 Demonstrate landing the victim on a surface while maintaining control of the rescue system.
6.2.6.9 Explain hazards to the victim and others who may be directly below the point of a horizontal movement.

6.2.6.9.1 Explain steps that can be taken to reduce the risks to the victim and others who may be located below the point of movement.

6.2.6.10 Demonstrate effective communication throughout the horizontal rescue.

6.2.6.11 Demonstrate regular checks on victim condition throughout the horizontal rescue.

6.3 Self-Rescue training requirements shall contain the following:

6.3.1 Demonstrate the ability to inspect and package the rescue system using manufacturer’s documentation.

6.3.2 Demonstrate an understanding of the employer rescue plan.

Employers are encouraged to have a rescue plan prepared before assigning employees to job assignments where a rescue may be required. Employees should be trained to understand the elements of the rescue plan and how they fit into the plan in an emergency.

6.3.3 Demonstrate the ability to perform a scene assessment and identify hazards which could endanger the person making a self-rescue.

This requirement is beyond the traditional hazard analysis which may have been created before the emergency requiring vertical rescue occurred. When an emergency occurs in a wind turbine, the hazard which created the emergency must be identified and controlled so that rescuers are not exposed to the same hazard.

Rescue operations may also create additional hazards that might not be present before the emergency occurred. Hazardous energy, enclosed spaces, environmental and human factors should be identified and controlled to prevent further injury to the individual(s) self-rescuing.

6.3.4 Demonstrate the ability to identify the method of self-rescue.

6.3.4.1 Identify the route of self-rescue.

6.3.4.2 Be able to describe self-rescue routes in a tower.

6.3.4.3 Be able to describe self-rescue routes in a nacelle.

6.3.4.4 Be able to describe self-rescue routes in a hub.

6.3.5 Identify equipment function(s) required to accomplish a self-rescue.

6.3.5.1 Identify any mechanical advantage requirements to perform a self-rescue.

6.3.5.2 Identify the device functional requirements to conduct the self-rescue while maintaining control.

Self rescue is most commonly addressed as a vertical movement; either ascending or descending. The device functional requirements must control the movements such that an uncontrolled movement is not encountered.

6.3.6 Identify additional pieces of equipment which may be required to support the self-rescue.

Employers are encouraged to train their personnel on the system or systems their employees will be assigned to use for self-rescue.

6.3.7 Demonstrate setting up the self-rescue equipment for a self-rescue.
6.3.7.1 Demonstrate identifying an anchor of suitable strength.

E 6.3.7.1 Rescue anchors are selected for a static load use. Typical anchor strength requirements are for supporting a maximum of 2 persons, with a maximum weight of 310 lbs. per person and a 5:1 safety factor. This suggests that rescue anchors should be selected to support 3,100 lbs. for a 2-person load.

6.3.7.2 Demonstrate connecting the self-rescue system to the anchor using the manufacturer’s recommended method.

E 6.3.7.2 Certain rigging configurations can multiply forces on the rigging and the anchors. Employers are encouraged to identify sling angles which multiply forces beyond what the equipment is designed to withstand and establish criteria which maintains an acceptable safety margin.

6.3.7.3 Demonstrate connection of the self-rescue system to the individual performing the self-rescue.

6.3.8 Demonstrate control of the rescue device during the self-rescue.

E 6.3.8 A common direction of travel for self-rescue is mostly vertical as can be expected in an evacuation from a place of height. The individual performing self-rescue should be able to demonstrate control during the descent and slowing the descent speed as they approach the landing area.

6.3.8.1 Explain the hazards of remaining below the point of evacuation and steps to take which can reduce the hazards.

E 6.3.8.1 There can be many reasons for performing a self-rescue from height. Among these can include conditions where materials can be dropping from height such as can be encountered in a fire emergency, others preparing for self-rescue, and loose items around the point of egress.

Employers are encouraged to develop procedures which inform their employees what steps to take to protect themselves and reduce the risk from falling objects during after self-rescue.

6.3.9 Demonstrate effective communications throughout the self-rescue.